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MicroBooNE and 
Short Baseline Neutrino Program  
at Fermilab

Outline
• Sterile Neutrinos: Physics Motivations 

• MicroBooNE: LArTPC Experiment 

• Short Baseline Neutrino Program  

• Breaking News From MicroBooNE  

• Summary



“Sterile Neutrino” : High ∆m2 Oscillation
• Liquid Scintillator Neutrino Detector (LSND) 

- Oscillation mode: νµ ⇒ νe ... L/E ≃ ο (1 m/MeV) 

- Result can be interpreted as oscillation at high ∆m2 

‣ 4th mass eigenstate ...  “sterile neutrino” PRD 64, 112007 (2001)

Solid Lines 
90% CL from other experiments

LSND allowed region for 
∆m2 vs. sin22θ 

Possible ∆m2 ∈ [0.2, 2.0] eV2
LSND Detection Channel
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• MiniBooNE also saw an excess! 
- …with ∆m2 ≃ 1 eV2 
‣ Another hint for high ∆m2 oscillation  
‣ “Low energy excess” (different from LSND?) 

• MiniBooNE: Booster Neutrino Experiment @ Fermilab 
- Oscillation mode: νµ ⇒ νe & νµ ⇒ νe ... L/E ≃ ο (1 m/MeV) 

- Cherenkov detector w/ mineral oil 
- Source: Booster Neutrino Beam (BNB) PRL 110, 161801(2013)

“Sterile Neutrino” : High ∆m2 Oscillation
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• MiniBooNE: Booster Neutrino Experiment @ Fermilab 
- Oscillation mode: νµ ⇒ νe & νµ ⇒ νe ... L/E ≃ ο (1 m/MeV) 

- Cherenkov detector w/ mineral oil 
- Source: Booster Neutrino Beam (BNB)

• MiniBooNE also saw an excess! 
- …with ∆m2 ≃ 1 eV2 
‣ Another hint for high ∆m2 oscillation  
‣ “Low energy excess” (different from LSND?) 

- What is the nature of “excess”? 
‣ Region dominated by γ background 
‣ Is it single e- or γ ? 
‣ MicroBooNE provides a definitive answer 

- What’s the physics behind excess? 
‣ Modern approach: multiple detector 
‣ Short Baseline Neutrino Program

PRL 110, 161801(2013)

“Sterile Neutrino” : High ∆m2 Oscillation
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MicroBooNE 
LArTPC  

at 
Fermilab Booster Neutrino Beamline
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MicroBooNE!

• Short Baseline Neutrino Oscillation Experiment @ Fermilab 
- Oscillation mode: νµ ⇒ νe  ... L/E ≃ ο (1 m/MeV)

MicroBooNE Cryostat & TPC

C
athodeA

no
de

Field Cage 
10.4 x 2.5 x 2.3 

90 ton LAr

Beam direction 
along 

TPC “Z-axis”

 Three Objectives 
1. MiniBooNE low E excess 
2. Low E ν-Ar cross-section 
3. LArTPC R&D

• Neutrino source 
- Booster Neutrino Beam (BNB) 
‣ Accelerator @ Fermilab  
‣ Identical to MiniBooNE!

• Detector (nu-target) 
- 170 ton of liquid argon (LAr) 
- Time Projection Chamber
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MicroBooNE Detector
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TPC Working Principle

Cathode @ -100 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize electrons 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

ν
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TPC Working Principle

Cathode @ -100 kV 
(plate)

Anode 
(wire plane)

Electric Field 
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1. Charged particles interact in Ar 
• Ionize electrons 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation 
Light

Scintillation Light 
detected by PMTs
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TPC Working Principle

Cathode @ -100 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize electrons 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light 
detected by PMTs

Max drift time ≃ 1.6 ms
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TPC Working Principle

Cathode @ -100 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~500 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize electrons 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light 
detected by PMTs

Drift Time = X position

Charge collected 
by wire plane
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Three Wire Planes

U plane 
(induction)

V plane 
(induction)

Y plane 
(collection)

⊕ ⊕ =

8256 wires w/ pitch = 3mm 
(Y, Z) = coincidence on wire

Induction Plane MC Waveform 
(Bi-polar pulse as e- pass through)

Collection Plane MC Waveform 
(Uni-polar pulse as e- collected)

Picture courtesy of J. Asaadi
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• Field non-uniformity arise  
- Distortion expected by Ar+ accumulation @ cathode 
- Needs to be calibrated out  

• Laser Calibration System (LCS) 
• LCS inject laser to ionize Ar along the path 

- λ ≅ 266 nm, need high intensity to ionize 
- Distortion shows up in the reconstructed signal path

Laser path @ ArgonTube 
(Uncalibrated)

Laser path @ ArgonTube 
(Calibrated)

Plot & Diagram ... courtesy of C. Rudolf

Calibrating LArTPC Field Uniformity
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TPC Preparation

TPC built w/ 8256 wires! 
w/ big effort on doing everything right :)
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Optical Detector
• What is it? What for? 

- 32 8” PMTs 
- Crucial roles 
‣ Getting trigger 
‣ Reconstructing YZ 
✓ Cosmic background rejection Array of 32 PMTsMicroBooNE PMT
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• What is it? What for? 
- 32 8” PMTs 
- Crucial roles 
‣ Getting trigger 
‣ Reconstructing YZ 
✓ Cosmic background rejection

Optical Detector

Crucial for MicroBooNE 
because of 

high cosmic ray rate (~5kHz) @ surface!

What we want
What we will have 

several cosmics within 
the same drift time period (1.6 ms)

µ

µ
µ µ

µ

µ

Array of 32 PMTsMicroBooNE PMT
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32 PMTs installed on the rack 
with TPB coated plate

This picture is taken with 60 [s] exposure time in covered (dark) cryostat 
Courtesy of Christoph Rudolf von Rohr

Optical Detector
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…When Everything Works Out…

Example DIS event 
(courtesy of ArgoNeuT collaboration)

47
 c

m

90 cm

p

Muon

π±

γ

γγ

γ

Data vs. MC comparison for 
Single γ and e- selection 

Andrzej S. from ArgoNeuT

• LArTPC provides great details of particle interaction in LAr 
- 3D geometric topology of charged particle trajectories, EM showers 

- Calorimetric information for dE/dX and total energy deposition 

• Rich event topology allows detailed XS measurement 

• Geometry + dE/dX allows us e-/gamma separation
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MicroBooNE … then What?

• MicroBooNE tells us whether the excess is electron or photon like 
• Then we want to understand the nature of this physics! 

- Understand flux: measure un-oscillated neutrino flux 
- More statistics: a detector of a larger mass 

• Short Baseline Neutrino (SBN) program is launched @ Fermilab



Short Baseline Neutrino Program 
~ Understanding Physics of Low Energy Excess ~
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Three LArTPC Detectors @ Fermilab

Steel%outer%cryostat%
and%support%structure%

Plate%A:%TPC%support%and%detector%
feedthroughs%
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• Three LArTPC @ BNB on-axis 
• SBND measures non-oscillated flux 
• ICARUS & MicroBooNE measures oscillated flux 
• SBN Program awarded Stage 1 approval at Fermilab 

following January 2015 PAC 
• SBN proposal: arxiv:1503.01520
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MicroBooNE 
~87 ton @ L = 470 m

ICARUS T600 
~476 ton @ 600 m

SBND 
~112 ton @ L = 110 m

http://arxiv.org/abs/1503.01520


Three LArTPC Detectors @ BNB

MicroBooNE 
~87 ton @ L = 470 m

ICARUS T600 
~476 ton @ 600 m

SBND 
~112 ton @ L = 110 m

• Three LArTPC @ BNB on-axis 
• SBND measures non-oscillated flux 
• ICARUS & MicroBooNE measures oscillated flux 
• SBN Program awarded Stage 1 approval at Fermilab 

following January 2015 PAC 
• SBN proposal: arxiv:1503.01520
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Study of the performance 
of Muon Tagger System (MTS)

Short-Baseline Near Detector

Steel%outer%cryostat%
and%support%structure%
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SBND 
Finalized Design

• Measures un-oscillated flux  
• Records 1.5e6 neutrino events every year 

- detailed measurement on rarer interactions 
• Detector design processing rapidly 
• Finalizing design of near detector building 
• Construction begins @ November 2015 
• SBND website: http://sbn-nd.fnal.gov

Muon Tagger Cryostat & TPC Laser System
24
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Progress in ICARUS T600
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ν
T600$

First&T300&in&Cleanroom&at&CERN&

• The design of the far detector 
building has been finalized with 
construction started last month! 

• The refurbishment of the T600 
has already begun at CERN 

• The first of the two T300 
modules will be finished by the 
end of 2015 and the second 
module by the end of 2016

Slide: courtesy of Joseph Z.



MicroBooNE News 
of 

Detector Commissioning
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MicroBooNE in 2015

O2 level decreasing 
during purging

Monitoring temperature 
while cooling

• Our detector placed in BNB in 2014 
• Followed by huge installation effort 

- Platform, racks, circulation system, etc 
- Software to control/monitor all of them 

• Purging and cooling very successful 
- Contamination level sufficiently decreased 
- Steady temperature drop 
- Demonstrated no evacuation needed 

• Of course we moved onto filling LAr :)

27

300 volume exchange 
70 ppm ⇒ 20 ppb

Steady temp. decrease 
(cold Argon gas)



MicroBooNE in 2015

Filling was monitored by an interactive app! 
… and of course broadcast :) …

July 9th!
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MicroBooNE in 2015

July 9th!

Same day, we turned on PMTs…. 
and VERY LIKELY Cosmic Signal observed :)
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MicroBooNE in 2015
Digitized PMT Waveforms From Readout 

Cosmic rays make time coincident large amplitude waveforms
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Hit PMT Positions

MicroBooNE in 2015
Digitized PMT Waveforms From Readout 

Cosmic rays make time coincident large amplitude waveforms
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Hit PMT Positions

MicroBooNE in 2015
Digitized PMT Waveforms From Readout 

Cosmic rays make time coincident large amplitude waveforms



MicroBooNE in 2015

Fun also outside the detector 
… nailed it …
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MicroBooNE in 2015
• Initial drift HV ramp-up on August 6th 

- Smooth operation to ramp up to ~1/2 target (58kV) 
- Complete “Slow”Monitoring/Control + immediate data taking/processing 
- Data became available for analysis within minutes

34

… in tense … 
nervous & exciting 

atmosphere :)



MicroBooNE in 2015

Cosmic track observed! @ First Event @ 58 kV
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MicroBooNE in 2015

Cosmic track observed! @ First Event @ 58 kV
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MicroBooNE in 2015

Cosmic rays & delta rays



MicroBooNE in 2015
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Likely muon decaying into michel electron
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MicroBooNE in 2015

EM Shower!
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MicroBooNE in 2015

Calibration 
Laser Track
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MicroBooNE in 2015

EM Shower!

Very Successful 1st Step!

More excitement to come!



Summary & Outlook 
of 

Short Baseline Neutrino Program
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Summary

• Short Baseline Neutrino Program @ Fermilab 
- High ∆m2 sterile neutrino oscillation search with well understood BNB source 
- Three LArTPC detector at different L/E to maximize sensitivity 
- Part of a larger LArTPC neutrino program in the U.S. 

• MicroBooNE 
- Commissioning!: detector purging, cooling, LAr filling all successful 
- Track/Shower seen @ initial drift HV ramp-up to 58 kV! 
- Finish commissioning before beam (October 2015) 
- Plan to take high statistics cosmic BG sample  

• SBND 
- Very active front, rapid progress in 2015 (construction @ November!) 

• ICARUS T600 
- Preparation of T300 modules on-going @ CERN
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Thank you for …  
Your attention (please wake up now) 

NuFact 2015 local organizers 
Brazil for great food, weather, and culture

My personal excitement in 2015 
First baby in January 5th :)



Detector Back Ups
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BNB: Neutrino Source

Magnetic Horn 
(Meson Focusing)

Booster 
(8 GeV Protons)

p

Beryllium Target 
“Thin & Long”

p

p

p

p

• 8 GeV protons from Booster hits Beryllium target to produce mesons

• Horn focuses positive (negative) mesons to produce neutrinos (anti-nu)

K+

K-
π+

π-

Toroidal B field

Decay Tunnel

µ+

νµ

µ+
νµ νe

νµ

Oscillation

MicroBooNE 
Detector

Absorber

~470m

DirtMagnetic Horn

Detection!

π

K
π

K

Kπ

π

π
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*New* Horn 
(replaced in 2015)



BNB 
On-Axis 

dtarget ≅ 470 m

MiniBooNE

MicroBooNE @ FNAL

MicroBooNE

PRD  79, 072002 (2009)

Horn: Neutrino Mode

Event Rate Break Down 
(flux & xs) 

- νµ ≃ 93.6% 
- νµ ≃ 5.86 % 
- νe ≃ 0.5 % 
- νe ≃ 0.05 % 

... high purity νµ beam ...

BNB: Providing Neutrinos Over a Decade

Very well known 
stable neutrino beam
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MicroBooNE in 2015
Digitized PMT Waveforms From Readout 
From LED Flasher calibration system test run

LED Flasher sends LED light to each PMTs (green pulse @ Ch. 39) 
seen by each PMTs shortly after (time-coincident signal)

PMT LED Flasher System Test Run



Optical Detector

• LAr optical properties 
- No detail here... but LOTS of physics! 
‣ Read arxiv 1306.4605 for instance 

- Produced within 6 ns of interaction 
- High light yield ≃ 6000 photons / MeV 
- “Transparent” to its own light 
‣ No re-scintillation (does Rayleigh scatter) 
‣ Wavelength shift by TPB

Crucial for MicroBooNE 
because of 

high cosmic ray rate (~5kHz) @ surface!

Array of 32 PMTsMicroBooNE PMT

TPB shifts wavelength from 128 nm 
to 430 nm, appropriate for PMTs

• What is it? What for? 
- 32 8” PMTs 
- Crucial roles 
‣ Getting trigger 
‣ Reconstructing YZ 
✓ Cosmic background rejection
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Neutron TPC

50
Courtesy of Marjon Moulai @ MIT 

From DPF 2015
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Neutron TPC

Courtesy of Marjon Moulai @ MIT 
From DPF 2015
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Neutron TPC

Courtesy of Marjon Moulai @ MIT 
From DPF 2015



NuMI @ MicroBooNE

• We can trigger on NuMI beam 
- “Off-Axis” ≃ 25° 
- Target-Detector ≃ 690 m 
- Absorber-Detector ≃ 100 m 

Expected Event Rate 
(2~3 years running)

NuMI Flux Estimate  
@ MicroBooNE

Plots/Numbers/Diagram 
Courtesy of D. Davis
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Temperature & Electric field 
affect drift velocity!

LArTPC: Temperature & HV

Drift velocity depends on T & |E|

W. Walkowiak NIM A449 p.288 (2000)

which affects measurement of X position

• Stability ... key for stable operation & detector systematics 
- Argon temperature and HV  
- LAr purity (later slide)
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Drift velocity depends on T & |E|

W. Walkowiak NIM A449 p.288 (2000)

which affects measurement of X position

Electric Field 
affects Electron Energy

Diffusion (σ) depends on drift distance & |E|

σ
ε : electron energy 
z : drift distance 
E: field strength

Picture credit: J. Asasdi

Temperature & HV are keys 
to understand detector response

• Stability ... key for stable operation & detector systematics 
- Argon temperature and HV  
- LAr purity (later slide)

LArTPC: Temperature & HV
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LAr Purity
From C. Montanari, June 2007

τe & e- attenuation

• High purity LAr necessary for 2.5 m drift! 
- Water & Oxygen affect electron lifetime 
‣ shorter lifetime = larger attenuation 

- Nitrogen causes scintillation light quenching 
- Goal: O2 < 100 ppt & N2 < 1 ppm

NIM A605, 306 (2009)

Example 
H2O Conc. vs. Lifetime

Example 
N2 Conc. vs. Light Attenuation

arxiv 1306.4605
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From C. Montanari, June 2007

τe & e- attenuation

Condenser

Cu O2 filter

Mole sieve

LAr cryostat

LAr pump

LAr

GAr

• High purity LAr necessary for 2.5 m drift! 
- Water & Oxygen affect electron lifetime 
‣ shorter lifetime = larger attenuation 

- Nitrogen causes scintillation light quenching 
- Goal: O2 < 100 ppt & N2 < 1 ppm

LAr Purity

• Filling & Purification System ... LAPD 
- Purge the detector with GAr first 
‣ Evacuating a large TPC volume is not very practical
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From C. Montanari, June 2007

τe & e- attenuation

• High purity LAr necessary for 2.5 m drift! 
- Water & Oxygen affect electron lifetime 
‣ shorter lifetime = larger attenuation 

- Nitrogen causes scintillation light quenching 
- Goal: O2 < 100 ppt & N2 < 1 ppm

LAr Purity Monitor

LAr Purity

• LAr Purity Monitor ... field cage w/ cathode & anode (design from ICARUS) 
- Xe flash lamp to liberate electrons 
‣ Qanode/Qcathode tells us τe 

Demonstrated & Works 
τe ≃ 6ms for many weeks!

• Filling & Purification System ... LAPD 
- Purge the detector with GAr first 
‣ Evacuating a large TPC volume is not very practical
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Cold Readout
• Reading signal from LAr 

- “Cold electronics” (by BNL) resides in LAr (reduced noise) 
‣ first stage amplification & shaping of signal 

- “Warm electronics” (by Nevis) resides in DAQ racks 
‣ Trigger & signal readout

59



Warm Readout
• Optical detector readout 

- “High” & “Low” gain ... 32 x 2 channels, shaped & digitized @ 64 MHz 
- Two readout stream to store waveform using discriminator logic 
‣ Neutrino (triggered readout) 
‣ SuperNova (continuous)

Neutrino stream 
- Cosmic discriminator (20 ADCs) 
- Beam discriminator (1500 ADCs) 
- Readout upon L1 trigger 
- Generate PMT-Trigger 

SuperNova stream 
- Continuous  
- Stored only for last 2 days worth
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Warm Readout

Time

Trigger Time

• TPC readout 
- 8256 channels digitized @ 2 MHz ... Neutrino & SuperNova readout stream 
‣ Neutrino records [-1.6, 3.2] ms upon trigger 
‣ SuperNova records every 1.6 ms

1.6 ms 1.6 ms 1.6 ms

Neutrino interaction occurs here

Electron drift from ν 
arrives anode within 

1.6 ms

Reading out [-1.6, 3.2] ms 
provides full information of 

cosmic background 
that may overlap w/ signal

• Optical detector readout 
- “High” & “Low” gain ... 32 x 2 channels, shaped & digitized @ 64 MHz 
- Two readout stream to store waveform using discriminator logic 
‣ Neutrino (triggered readout) 
‣ SuperNova (continuous)
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Warm Readout

• TPC readout 
- 8256 channels digitized @ 2 MHz ... Neutrino & SuperNova readout stream 
‣ Neutrino records [-1.6, 3.2] ms upon trigger 
‣ SuperNova records every 1.6 ms

• Optical detector readout 
- “High” & “Low” gain ... 32 x 2 channels, shaped & digitized @ 64 MHz 
- Two readout stream to store waveform using discriminator logic 
‣ Neutrino (triggered readout) 
‣ SuperNova (continuous)

If stored “raw” ... ≃ 4.8 GB/s!

What is the data rate for 15 Hz 
beam ... readout with 16 bit data 

word for 6.4 ms @ 2MHz 
digitization for 8256 channels?

Easy Math Quiz Online Data Handling
• “On-the-fly” data size reduction 

- Huffman compression (lossless) 
- Zero suppression (for SN) 

• Readout trigger 
- Only interesting event (next slide)

Data size feasible :)
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Warm Readout

• Trigger 
- Readout 4 x 1.6 ms frames @ coincidence of beam pulse & PMT-Trigger

PMT beam (1500 samples)

Time

Trigger Time

TPC beam [-1.6, 3.2] ms @ 2 MHz
PMT cosmic (20 samples)

• TPC readout 
- 8256 channels digitized @ 2 MHz ... Neutrino & SuperNova readout stream 
‣ Neutrino records [-1.6, 3.2] ms upon trigger 
‣ SuperNova records every 1.6 ms

• Optical detector readout 
- “High” & “Low” gain ... 32 x 2 channels, shaped & digitized @ 64 MHz 
- Two readout stream to store waveform using discriminator logic 
‣ Neutrino (triggered readout) 
‣ SuperNova (continuous)
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Readout Calibration
• Need to figure out how many electrons in our signal!

Gain = 
Output Charge (ADC)
Input Charge (# electrons)

NEEDED 
for 1st step of reconstruction!

• How to calibrate? 
- Inject test pulse with known charge 
- Compare with output charge 
- Fit a linear relationship to obtain gain

Test Pulse 
Waveform 

Gain 
Linearity Fit
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Physics Back Ups
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MicroBooNE Physics: More

• SuperNova  

- ν’s detected from SN1987A  

‣ Characteristic short burst 

‣ Nobel prize (2002)! 

- We can detect νe capture on Ar  

- We cannot trigger on its own  

‣... small volume & too much cosmics! 

- But we can analyze SuperNova data upon SNEWS  

‣ That’s why we have dedicated data stream!

SN1987A

Before

During

After
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MicroBooNE Physics: More
• Proton Decay 

- Cannot study proton decay: p ⇒ K+ ν ... too small :( 

- Can study cosmic induced background rate: K0 p ⇒ K+ n 

‣ Important measurement for future LArTPC 

‣ High cosmic rate can be helpful sometimes :)

µ

KL0

K+

p
n

Rock MicroBooNE Detector

LAr

It would look as if K+  
suddenly appeared in the detector...
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TPC Volume [ton] 90

Dimension [m] 10.4 x 2.5 x 2.3

# Channels 8256

Wire Diameter [mm] 0.15

Wire Pitch [mm] 3

Operating Temp. [K] 87

Max Drift Length [m] 2.53

Electric Field 500 V / cm

PMT Type Hamamatsu R5912-02

PMT Size 8”

# Channels 32

Wavelength Shifter TPB coated acrylic plate

TPC

Light Collection System

MicroBooNE Detector: Numbers
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Basics
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• MicroBooNE is ... 
- a short baseline neutrino oscillation experiment @ Fermilab 
‣ Oscillation: νµ ⇒ νe @ L/E ≃ ο (1 m/MeV) 
‣ neutrino source = running Booster Neutrino Beam @ Fermilab 

- a Liquid Argon Time Projection Chamber (LArTPC) 
‣ mass = 170 ton (active = 90 ton) 
‣ provides excellent particle ID and calorimetry

What Is MicroBooNE?

LArTPC provides “photo quality image” of particle interaction! 
Basically digitized “bubble chamber” image!

ArgoNeuT Data ... More details on this later
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• MicroBooNE is ... 
- a short baseline neutrino oscillation experiment @ Fermilab 
‣ Oscillation: νµ ⇒ νe @ L/E ≃ ο (1 m/MeV) 
‣ neutrino source = running Booster Neutrino Beam @ Fermilab

What Is MicroBooNE?

Magnetic Horn 
(Meson Focusing)

Booster 
(8 GeV Protons)

p

Beryllium Target 
“Thin & Long”

π

K
π

K

Kπ

π

π

p

p

p

p

8 GeV protons from Booster  
hits Beryllium target to produce mesons
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U.S. based R&D Program for LArTPC

Bo TPC 
0.02 ton

ArgoNeuT 
0.3 ton

MicroBooNE 
0.1 kilo-ton

DUNE Far Detector 
34 kilo-ton

LUKE 
(Material Test Stand)

LAPD 
Purity Demonstrator

LArIAT 
TPC Calibration

CAPTAIN 
TPC Calibration

LBNE 35 ton 
Purity Demonstrator

• Wide effort on LArTPC R&D in the U.S. 

• MicroBooNE has an important role as the next large scale LArTPC

SBN 
0.05 + 0.6 kilo-ton
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LSND Detector

Courtesy of “Celebrating Neutrinos” (LANL)

νe p
n

e+

Inverse Beta Decay

Thermal Neutron Capture

n

p

d
γ

• e+ release energy 
- Cerenkov + annihilation 
- ≃ Eν - 0.8 MeV 

• n capture ~ 200 µs later  
- 2.2 MeV gamma ray

• Liquid Scintillator Neutrino Detector (LSND) 
- Primary oscillation mode: νµ ⇒ νe ... L/E ≃ ο (1 m/MeV) 

Why MicroBooNE? … LSND

73


